skip to main content


Search for: All records

Creators/Authors contains: "Wang, Charlie C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we present a new computational pipeline for designing and fabricating 4D garments as knitwear that considers comfort during body movement. This is achieved by careful control of elasticity distribution to reduce uncomfortable pressure and unwanted sliding caused by body motion. We exploit the ability to knit patterns in different elastic levels by single-jersey jacquard (SJJ) with two yarns. We design the distribution of elasticity for a garment by physics-based computation, the optimized elasticity on the garment is then converted into instructions for a digital knitting machine by two algorithms proposed in this paper. Specifically, a graph-based algorithm is proposed to generate knittable stitch meshes that can accurately capture the 3D shape of a garment, and a tiling algorithm is employed to assign SJJ patterns on the stitch mesh to realize the designed distribution of elasticity. The effectiveness of our approach is verified on simulation results and on specimens physically fabricated by knitting machines. 
    more » « less
  2. The revolution of additive manufacturing (AM) has led to many opportunities in fabricating complex and novel products. The increase of printable materials and the emergence of novel fabrication processes continuously expand the possibility of engineering systems in which product components are no longer limited to be single material, single scale, or single function. In fact, a paradigm shift is taking place in industry from geometry-centered usage to supporting functional demands. Consequently, engineers are expected to resolve a wide range of complex and difficult problems related to functional design. Although a higher degree of design freedom beyond geometry has been enabled by AM, there are only very few computational design approaches in this new AM-enabled domain to design objects with tailored properties and functions. The objectives of this review paper are to provide an overview of recent additive manufacturing developments and current computer-aided design methodologies that can be applied to multimaterial, multiscale, multiform, and multifunctional AM technologies. The difficulties encountered in the computational design approaches are summarized and the future development needs are emphasized. In the paper, some present applications and future trends related to additive manufacturing technologies are also discussed. 
    more » « less